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We have used the diffusion quantum Monte Carlo method to calculate the energy band of the two-
dimensional homogeneous electron gas �HEG�, and hence we have obtained the quasiparticle effective mass
and the occupied bandwidth. We find that the effective mass in the paramagnetic HEG increases significantly
when the density is lowered, whereas it decreases in the fully ferromagnetic HEG. Our calculations therefore
support the conclusions of recent experimental studies �Y.-W. Tan et al., Phys. Rev. Lett. 94, 016405 �2005�;
M. Padmanabhan et al., Phys. Rev. Lett. 101, 026402 �2008�; T. Gokmen et al., Phys. Rev. B 79, 195311
�2009��. We compare our calculated effective masses with other theoretical results and experimental measure-
ments in the literature.
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I. INTRODUCTION

Landau’s Fermi-liquid theory1 is an immensely successful
and widely used framework for understanding the properties
of interacting electron systems.2 Low-energy excitations in a
fluid of interacting electrons can be treated as excitations of
independent quasiparticles, whose energy-momentum rela-
tionship �the quasiparticle energy band� generally differs
from that of free electrons. Close to the Fermi surface, the
quasiparticle band can be approximated by the free-particle
form appropriate for particles of mass m�, where the quasi-
particle effective mass m� may differ from the bare mass of
an electron. Given the widespread use of Fermi-liquid theory,
it comes as something of a surprise to learn that the effective
mass of a paramagnetic two-dimensional �2D� homogeneous
electron gas �HEG� has been the subject of great controversy
in recent years. Early experiments3,4 found a large enhance-
ment of the effective mass at low density, but subsequent
experiments5,6 have found the increase in the effective mass
to be considerably smaller. On the theoretical side, many-
body perturbation theory �GW� calculations give a range of
possible results depending on the choice of effective interac-
tion and whether or not the Dyson equation is solved
self-consistently,2,7,8 while quantum Monte Carlo �QMC�
studies have found either much less9,10 or much greater11

enhancement of the effective mass than the experiments sug-
gest. Finally, some recent experiments6 have shown that the
effective masses in paramagnetic and ferromagnetic HEGs
behave quite differently as a function of density, as had been
predicted using many-body perturbation theory.12 The ex-
periments show that the effective mass of a ferromagnetic
HEG decreases as the density is lowered, which has also
been observed in a recent GW study.13 Understanding the
magnetic behavior of the 2D HEG at low density will play an
important role in the design of spintronic devices.

In this article, we present QMC calculations14 of the en-
ergy band of the 2D HEG. We have calculated the band E�k�
by evaluating the difference in the total energy when an elec-
tron is added to or removed from a particular momentum
state k. To our knowledge, this is the first QMC calculation
of the complete 2D HEG occupied energy band. As ex-

plained above, electronic excitations close to the Fermi sur-
face correspond to quasiparticle excitations. The electronic
and quasiparticle bands therefore agree near the Fermi sur-
face and have the same derivative at kF. The effective mass
of a HEG can be written as2 m�=kF / ��E /�k�kF

, where kF is
the Fermi wave vector,15 and hence it is straightforward to
compute the effective mass once the energy band has been
determined. Our effective mass data should help to resolve
the controversies surrounding the increase in the effective
mass of the paramagnetic 2D HEG at low density. We have
studied both paramagnetic and ferromagnetic HEGs in order
to look for the differences in behavior observed by Pad-
manabhan et al.6

We use Hartree atomic units ��= �e�=me=4��0=1�
throughout. Densities are given in terms of the radius rs of
the circle that contains one electron on average. All our
QMC calculations were performed using the CASINO code.16

The rest of this article is arranged as follows. We explain
our methodology in Sec. II. We present our results in Sec. III.
Finally we draw our conclusions in Sec. IV.

II. METHODOLOGY

In the variational quantum Monte Carlo �VMC� method,
expectation values are calculated with respect to a trial wave
function, the integrals being performed by a Monte Carlo
technique. In the diffusion quantum Monte Carlo14 �DMC�
method the imaginary-time Schrödinger equation is used to
evolve an ensemble of electronic configurations towards the
ground state. Fermionic symmetry is maintained by the
fixed-node approximation,17 in which the nodal surface of
the wave function is constrained to equal that of a trial wave
function.

Our trial wave functions consisted of Slater determinants
of plane-wave orbitals multiplied by a Jastrow correlation
factor. The Jastrow factor contained polynomial and plane-
wave expansions in electron-electron separation.18 The orbit-
als in the Slater wave function were evaluated at quasiparti-
cle coordinates related to the actual electron positions by
backflow functions consisting of polynomial expansions in

PHYSICAL REVIEW B 80, 245104 �2009�

1098-0121/2009/80�24�/245104�8� ©2009 The American Physical Society245104-1

http://dx.doi.org/10.1103/PhysRevB.80.245104


electron-electron separation.19 The wave functions were op-
timized by variance minimization20,21 followed by linear-
least-squares energy minimization.22 The high quality of our
trial wave functions is demonstrated in this paper and in Ref.
23.

The single-particle energy for an occupied state at wave
vector k is defined to be E�k��E0−E−�k�, while the single-
particle energy for an unoccupied state is E�k��E+�k�−E0,
where E0 is the ground-state total energy, E+�k� is the total
energy of the system with an extra electron placed in orbital
exp�ik ·r�,24 and E−�k� is the total energy with an electron
removed from orbital exp�ik ·r�. In a finite simulation-cell
subject to periodic boundary conditions, the available states
�k� fall on the grid of reciprocal-lattice points offset by the
simulation-cell Bloch vector ks.

25,26 The simulation cell was
left unchanged when electrons were added or removed. We
have confirmed that finite-size biases are negligible by car-
rying out simulations in different cell sizes: see Figs. 2 and 3.
We have also verified that the band values obtained with
different simulation-cell Bloch vectors lie on the same curve
as the band values obtained with ks=0. Having determined
the energy band at a series of k values, we performed a
least-squares fit of a quartic function E�k�=�0+�2k2+�4k4 to
the band values. The DMC energy band is defined as a dif-
ference in total-energy eigenstates; as explained in the intro-
duction, this coincides with the quasiparticle band near the
Fermi surface and hence gives a correct description of the
effective mass.

The number of electrons N in each of our ground-state
calculations was chosen to be a “magic number” correspond-
ing to a closed-shell configuration when ks=0. In this case
real, single-determinant wave functions are appropriate for
the ground-state calculations, facilitating the optimization of
the wave function. In the �N+1�- and �N−1�-electron
excited-state calculations, we used the Jastrow factor and
backflow function that were optimized for the N-electron
ground state. Reoptimizing the wave function in the excited
state was not found to make a significant difference to the
VMC or DMC energies. To try to obtain a better estimate of
the energy of the �N+1�-electron system, we constructed a
multideterminant wave function in which the extra electron
occupied each of the symmetry-equivalent k vectors in the
partially filled shell. The determinant coefficients were free
parameters, which we optimized by linear-least-squares en-
ergy minimization. However, we were unable to lower the
VMC energy significantly using this form of wave function,
so in our production calculations we used single-determinant
wave functions for the �N+1�- and �N−1�-electron systems.
Our DMC results are converged with respect to time step, as
is clear from the agreement between the energy bands ob-
tained at different time steps in Fig. 2�b�.

Unlike the DMC calculations of Kwon et al.,9,10 we did
not promote electrons from the ground-state configuration;
we simply added or subtracted single electrons. The energy
difference that results from promoting an electron contains a
contribution from the interaction between the excited elec-
tron and the hole that it leaves behind, in addition to the
difference of band energies. By contrast, the energy differ-
ence resulting from adding or subtracting an electron simply
gives the corresponding band energy. We believe our ap-

proach to be a simpler procedure for calculating the band and
hence the effective mass, although it does not give values for
the quasiparticle-interaction Fermi-liquid parameters. Our
determination of the effective mass will facilitate subsequent
calculation of the other Fermi-liquid parameters using the
approach of Kwon et al.

The other important difference between our methodology
and that of Kwon et al. is that we have used a fit to the entire
occupied band to determine the derivative at kF and hence
the effective mass. This was done for the following reasons:
�i� evaluating the derivative numerically using only a few
band values near kF is unreliable because of the noise in the
band data; �ii� the DMC-calculated band suffers from
Hartree-Fock-like pathological behavior in the vicinity of kF
because the method does not retrieve all the correlation en-
ergy �see the discussion in Sec. III B�; and �iii� the band
evaluated in a finite cell may suffer from finite-size effects in
the vicinity of the Fermi surface.11 Although the pathological
behavior dominates the derivative of the band in the vicinity
of kF, it has only a negligible effect on the band fitted over a
wide range of k. The fit to the band is good, so that the
derivative of the fitted band at kF should be reliable: see Figs.
2 and 3 and Figs. 8 and 9.

The occupied bandwidth of the HEG is �E=E�kF�−E�0�
=E−�0�−E−�kF�. The DMC bandwidth is expected to be an
upper bound on the true bandwidth: assuming that DMC
retrieves the same fraction of the correlation energy in the
ground and excited states, the bandwidth will lie between the
Hartree-Fock �HF� value E−

HF�0�−E−
HF�kF�, which is too

large,2 and the exact result E−
exact�0�−E−

exact�kF�. Likewise, the
Slater-Jastrow DMC bandwidths are expected to be greater
than the Slater-Jastrow-backflow DMC bandwidths, as can
be seen to be the case in Fig. 2�b�. To obtain an accurate
bandwidth, it is essential to retrieve a very large fraction of
the correlation energy in the QMC calculations, which ex-
plains why the use of DMC and the inclusion of backflow is
so important in this work.

A crude way of estimating the ground-state energy is to
plot the VMC energy against the variance obtained with dif-
ferent trial wave functions and extrapolate the VMC energy
linearly to zero variance, as shown in Fig. 1. This procedure
suggests that our DMC calculations retrieve more than 99%
of the correlation energy, and that the fraction retrieved is
similar in both the ground-state and excited-state calcula-
tions. Suppose the free-electron bandwidth is greater than or
approximately equal to the exact bandwidth �this is true for
the ferromagnetic HEG and approximately true for the para-
magnetic HEG�, so that the error in the HF bandwidth is less
than or approximately equal to �EHF−�Efree=kF�1−2 /��.
Hence the error in the DMC bandwidth is less than
0.01kF�1−2 /��	0.007 /rs for a ferromagnetic HEG and less
than about 0.01kF�1−2 /��	0.005 /rs for a paramagnetic
HEG. Since the bandwidth falls off as rs

−2, the error is more
significant at large rs. In the worst case, the paramagnetic
HEG at rs=10 a.u., this argument suggests that DMC over-
estimates the bandwidth by about 9%. The errors in the other
results are much smaller. It seems reasonable to assume that
if the bandwidth is overestimated by a given amount then the
effective mass will be underestimated by a similar fraction.
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III. RESULTS

A. Energy bands

Our calculated energy bands are shown in Figs. 2 and 3
for paramagnetic and ferromagnetic HEGs, respectively. The
free-electron and HF bands are shown for comparison. As is
well-known, the free-electron band is very much more accu-
rate than the HF band, especially at low densities and espe-
cially in the paramagnetic fluid. The HF band is pathological
due to the long range of the exchange hole, which results in
incomplete screening of the Coulomb interaction.2 Our DMC
bandwidths are shown in Table I. The bandwidth in paramag-
netic HEGs at intermediate and low densities is less than the
free-electron bandwidth. On the other hand, in the ferromag-
netic HEG the bandwidth is greater than the free-electron
bandwidth at all densities studied. In each case the DMC
bandwidth is considerably smaller than the HF bandwidth.

It is striking how closely the DMC band agrees with the
free-electron band E�k�=k2 /2 for a paramagnetic HEG at rs
=1 a.u. At rs=5 and 10 a.u., the quartic term �4k4 in the
fitted band is positive for the paramagnetic HEG. For the
ferromagnetic HEG the quartic term is negative at all densi-
ties. In either case the band is clearly not quadratic. This will
result in nonfree-particle-like thermodynamic behavior at
high temperatures.

B. Effective masses

Our DMC effective masses for paramagnetic and ferro-
magnetic HEGs are plotted in Figs. 4 and 5, respectively,
along with various experimental results and previous theoret-

ical predictions. Our effective masses are also given in
Table II. In a paramagnetic HEG the effective mass increases
with rs: at rs=1 a.u. the effective mass is slightly less than
the bare electron mass, but at rs=5 a.u. the effective mass is
significantly enhanced. On the other hand, in ferromagnetic
HEGs the effective mass decreases when the density is low-
ered. Our results therefore support the conclusions of Pad-
manabhan et al.6 In fact our ferromagnetic effective masses
are in good quantitative agreement with the experimental
data of Padmanabhan et al.,27 while our paramagnetic effec-
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FIG. 1. �Color online� VMC variance against energy for differ-
ent trial wave functions for a 58-electron paramagnetic HEG of
density parameter rs=5 a.u. Plots are shown for the GS and an
excited state in which an electron is removed from the highest-
occupied shell. The slanted lines show fits to the VMC data. The
vertical lines show the fixed-node DMC energies obtained with
Slater-Jastrow-backflow wave functions. The HF ground-state and
excited-state energies are −0.100222 and −0.099632 a.u. per elec-
tron, respectively. The difference between the slanted and vertical
lines at zero variance gives an approximation to the correlation
energy missing in the DMC calculation. This is clearly small com-
pared with the difference between the HF and DMC energies.
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FIG. 2. �Color online� Energy bands of paramagnetic N-electron
2D HEGs at rs=1 �top�, 5 �middle�, and 10 a.u. �bottom�. The
free-electron and HF bands are offset to coincide with the fitted
DMC band at k=kF. The curve labeled “SJ” used a Slater-Jastrow
trial wave function; the others used a Slater-Jastrow-backflow trial
wave function. Except where indicated otherwise, DMC time steps
� of 0.01, 0.2, and 0.4 a.u. were used at rs=1, 5, and 10 a.u. The
solid lines show quartic fits to the DMC data for N=74, 114, and
114 electrons at rs=1, 5, and 10 a.u., respectively. �These are the
largest system sizes for which we have sufficient data to perform an
adequate fit.�
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tive masses are in reasonable agreement with those measured
by Tan et al.5 We do not find especially good agreement with
earlier theoretical work, however. As can be seen in Fig. 4,
the effective masses obtained using the GW method depend
strongly on the choice of effective interaction and whether or
not the Dyson equation is solved self-consistently, undermin-

ing confidence in that approach. The DMC data of Kwon
et al. do not show a significant enhancement of the paramag-
netic effective mass at low densities.9 �Our calculations dif-
fer from those of Kwon et al. in that we use wave functions
that retrieve a greater fraction of the correlation energy, we
use larger system sizes, and we use different excitations to
evaluate the effective mass.�

TABLE I. Bandwidths of paramagnetic and ferromagnetic 2D HEGs of density parameter rs, as calculated
using DMC, free-electron theory ��E=kF

2 /2�, and HF theory ��E=kF
2 /2+kF�1−2 /���. The DMC bandwidths

were obtained from the fitted curves shown in Figs. 2 and 3.

rs

�a.u.�

Bandwidth �a.u.�
DMC Free electron HF

Paramagnetic Ferromagnetic Paramagnetic Ferromagnetic Paramagnetic Ferromagnetic

1 1.045�5� 2.434�6� 1.00 2.00 1.513 2.726

5 0.0281�8� 0.141�1� 0.04 0.08 0.142 0.225

10 0.0055�3� 0.0427�8� 0.01 0.02 0.061 0.092
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FIG. 3. �Color online� As Fig. 2, but for ferromagnetic HEGs.
The solid lines show quartic fits to the DMC data for N=57, 101,
and 57 electrons at rs=1, 5, and 10 a.u., respectively.
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FIG. 4. �Color online� Effective mass m� against density param-
eter rs for paramagnetic or partially spin-polarized 2D HEGs, as
calculated or measured by different authors. Our DMC results were
obtained from the fitted curves shown in Fig. 2. The GW results
were obtained using the random-phase-approximation effective in-
teraction �Ref. 2� and the Kukkonen-Overhauser �KO� effective in-
teraction �Ref. 8� by solving the Dyson equation self-consistently
�SC� or within the on-shell approximation �OSA�. All the results
shown are for paramagnetic HEGs with the exception of the experi-
mental results of Ref. 6, which are for a partially spin-polarized
HEG.
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Holzmann et al.11 have recently studied the paramagnetic
2D HEG effective mass using the VMC method. Their effec-
tive masses differ significantly from our DMC results: see
Fig. 4. Holzmann et al. considered additions of electrons in
the vicinity of the Fermi surface. They found substantial
finite-size effects in the effective mass, which they corrected
by considering the finite-size dependence of the discontinuity
in the momentum distribution at the Fermi edge. Our effec-
tive masses do not appear to suffer from these finite-size
effects; in fact, our effective masses show the opposite trend
with system size, as can be seen in Fig. 6. If the finite-size
correction to the mass falls off as N−1/4 as predicted by Holz-
mann et al. then the correction should be roughly halved on
going from N=18 to N=202 electrons. Noting that the cor-
rection is supposed to increase the mass, this ought to be
visible in our data. Since it is not, the finite-size correction of
Holzmann et al. appears to be statistically insignificant.

A possible explanation for this difference is that we
obtained our effective masses by fitting a band to a wide
range of k values instead of just considering the behavior in
the vicinity of the Fermi surface. As can be seen in Fig. 7,
the HF bands of finite systems as well as infinite ones ex-
hibit pathological behavior near the Fermi surface. The de-
rivatives of the bands become large and fluctuate wildly. The

numerical derivatives of the DMC bands are plotted in
Figs. 8 and 9. It can be seen that the DMC bands exhibit
residual Hartree-Fock-like pathological behavior at the
Fermi surface, because not all the correlation energy is re-
trieved. The pathological behavior is more pronounced in
paramagnetic HEGs and at low densities. Our procedure of
fitting the band over a wide range of k enables us to avoid

TABLE II. DMC-calculated effective masses m� of paramag-
netic and ferromagnetic 2D HEGs of density parameter rs.

rs

�a.u.�

m� �a.u.�

Paramagnetic Ferromagnetic

1 0.949�6� 0.863�4�
5 1.21�2� 0.71�1�
10 1.34�5� 0.61�1�
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FIG. 5. �Color online� Effective mass m� against density param-
eter rs for ferromagnetic 2D HEGs. Our DMC results were obtained
from the fitted curves shown in Fig. 3. The GW results were ob-
tained using the KO effective interaction by solving the Dyson
equation SC or within the on-shell OSA. �Ref. 13�
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this pathological behavior. The finite-size effects considered
by Holzmann et al. only affect the energy band in the vicin-
ity of the Fermi surface, suggesting that it is also possible to
avoid these finite-size effects by fitting the band over a wide
range of k.

It may seem counterintuitive to use DMC data for excita-
tions far from the Fermi surface in order to determine the
effective mass, which is a parameter in a theory describing

excitations in the vicinity of the Fermi surface. However, we
reiterate that it is a premise of Fermi liquid theory that the
quasiparticle band coincides with the energy band defined by
differences in total-energy eigenvalues in the vicinity of the
Fermi surface, so that the derivative of the quasiparticle band
at the Fermi surface is equal to the derivative of the elec-
tronic energy band. It is possible in principle that the gradi-
ent of the energy band may change sharply in the vicinity of
the Fermi surface, but there seems to be no reason to suppose
this to be the case and our results do not provide any evi-
dence for this sort of behavior: the energy bands shown in
Figs. 2 and 3 look well behaved. Nevertheless, it is comfort-
ing to observe that our effective mass results are insensitive
to a reduction in the range of k values used to perform the fit.
This result is obvious from looking at Figs. 2 and 3, and
it also follows from a quantitative study, as shown in
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Tables III and IV. For both the paramagnetic and ferromag-
netic HEGs, discarding data far from kF has little effect on
the calculated effective mass, until the remaining data points
are all sufficiently close to kF that either the pathological
behavior of the DMC energy band in this region starts to
dominate or there are insufficient data to perform an accurate
fit.

Another possible reason for not reproducing the finite-size
errors in the effective mass predicted by Holzmann et al.
might simply be that some of their assumptions are invalid.
We have reproduced their O�N−1/4� scaling of the finite-size
error in the renormalization factor �the discontinuity Z in the
momentum density at the Fermi edge� in VMC calculations,
as shown in Fig. 10. However, when an electron is added,
there are two contributions to the momentum density: a peak
of weight Z at the momentum at which the electron is added
and a smeared-out background of weight 1−Z.2 Together,
these two contributions to the change in the momentum den-
sity are responsible for the change in the kinetic energy when
the electron is added, i.e., for the kinetic contribution to the
energy band. Examples of the changes in the VMC momen-
tum density that result from adding or removing electrons
from different k are shown in Fig. 11. It can be seen that the
smeared-out background depends on the k at which the elec-
tron is added, its average tending to increase with k. The
finite-size error in the weight Z of the peak is equal and
opposite to the finite-size error in the weight 1−Z of the
background. The finite-size error in the derivative of the en-
ergy band due to the background therefore tends to cancel
the finite-size error due to the peak. So it is not clear that the
O�N−1/4� finite-size error in the renormalization factor should
result in an O�N−1/4� error in the gradient of the energy band
and hence effective mass.

IV. CONCLUSIONS

In summary, we have used DMC to calculate the energy
band of the interacting 2D HEG, and hence we have obtained
the quasiparticle effective mass. Our ferromagnetic and para-
magnetic effective masses are in agreement with the experi-
mental results of Padmanabhan et al.6 and Tan et al.,5 respec-
tively. In particular, our data confirm that the effective mass
of the paramagnetic HEG increases when the density is low-
ered, while the effective mass of the ferromagnetic HEG
decreases.
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TABLE III. Effective mass m� versus range of k values used to
fit the energy band for a 114-electron paramagnetic HEG at rs

=5 a.u.

Range No. pts in fit
m�

�a.u.�

0.0�k /kF�1.33 17 1.21�2�
0.23�k /kF�1.26 15 1.18�2�
0.33�k /kF�1.20 13 1.14�2�
0.47�k /kF�1.17 11 1.12�3�

TABLE IV. Effective mass m� versus range of k values used to
fit the energy band for a 101-electron ferromagnetic HEG at rs

=5 a.u.

Range No. pts in fit
m�

�a.u.�

0.0�k /kF�1.18 12 0.706�9�
0.18�k /kF�1.12 10 0.72�1�
0.35�k /kF�1.06 8 0.722�9�
0.5�k /kF�0.95 6 0.686�8�
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FIG. 10. �Color online� VMC renormalization factor Z against
number of electrons N for paramagnetic 2D HEGs at rs=10 a.u.
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FIG. 11. �Color online� VMC momentum density ��k� relative
to the ground-state momentum density �GS�k� for different excita-
tions to a paramagnetic 58-electron HEG at rs=10 a.u. The mo-
mentum densities are averaged over reciprocal-lattice vectors of the
same length, so the height of the spike at the �k� at which the
electron is added looks smaller when there are many reciprocal-
lattice vectors with the same length as �k�.
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